
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Binary Collision Effects in Lorentz Gases
S. Ranganathana; K. C. Sharmab

a Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston,
Ontario, Canada b Department of Physics, Chemical Pradesh University, Simla, India

To cite this Article Ranganathan, S. and Sharma, K. C.(1988) 'Binary Collision Effects in Lorentz Gases', Physics and
Chemistry of Liquids, 18: 3, 235 — 240
To link to this Article: DOI: 10.1080/00319108808078597
URL: http://dx.doi.org/10.1080/00319108808078597

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319108808078597
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Phys. Chem. Liq., 1988, Vol. 18, pp. 235-240 
Reprints available directly from the publisher 
Photocopying permitted by license only 
c) 1988 Gordon and Breach Science Publishers Inc. 
Printed in the United Kingdom 

Binary Co 
in Lorentz 

lision Effects 
Gases 

S. RANGANATHAN 

Department of Mathematics and Computer Science, 
Royal Military College of Canada, 
Kingston, Ontario, Canada K7K 5L0. 

and 

K. C. SHARMA 
Department of Physics, Himachal Pradesh University, Simla. India 171005. 

(Received 16 March 1988) 

The role of binary collisions in Lorentz Gases is investigated through a dynamical theory 
which incorporates exactly all the effects of a single collision between a pair of particles 
interacting with a Lennard-Jones potential. The comparison of our results with those of 
molecular dynamics thus yields a quantitative estimate of the effect and indicates that our 
simple but very physical model is able to account for a significant portion of the decay of 
the density fluctuation correlation function, for the wave numbers considered. 

Key Words: Lorentz gas, binary collision, incoherent scattering function, molecular 
dynamics. 

It has been realized that the Lorentz Gas model, in which classical light 
particles without mutual interaction move in a random array of 
stationary scatterers, exhibits a number of features relevant to the 
understanding of the dynamics in classical fluids. l V 2  Molecular dynam- 
ics computer simulation (MD) studies have been carried out for hard 
 sphere^^,^ and very recently for Lennard-Jones p ~ t e n t i a l . ~  The latter 
study was motivated by a neutron-scattering experiment of dilute 
Hydrogen in dense Argon,' a system which is a good realization of a 
Lorentz Gas model. 

However a full theoretical understanding of such a simple-statistical 
mechanical model is still lacking. For a hard-sphere potential system, 
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theoretical calculations have been performed within the repeated ring 
collision approximation' and using mode coupling theories.8 However 
very little progress has been made using a realistic potential. 

In this paper, a dynamical theory of a Lorentz Gas System which 
incorporates exactly all the effects of a single binary collision is being 
studied. The intermolecular potential is assumed to be the Lennard- 
Jones potential. Such a Binary Collision Expansion' (BCE), when 
applied to classical fluids"-12 is able to account for a significant 
portion of the density correlation function over a wide range of 
densities and wave numbers. Such a study gives us an understanding of 
the role the binary collisions play in the dynamical processes that occur 
in a fluid. Here, we have used this theory to calculate the incoherent 
scattering function S,(q, o) and its intermediate scattering function 
F,(q, t )  of a Lorentz Gas System in which the stationary scatterers are 
Argon atoms in an equilibrium configuration and not in a random 
configuration and the light particle is the Hydrogen molecule. We have 
chosen such a system in order that the results can be compared with 
those of M D  sirnulati~n.~ The M D  results have already been 
compared5 with the experimental data.6 

For practical calculations, the BCE is generally restricted to just the 
first two terms of the expansion-the first term representing the free 
particle contribution and the second term representing exactly all the 
contribution of a single binary collision between a pair of particles, 
interacting with any given two-body potential. The second term 
involves the dynamics of a two-particle system with the initial position 
determined by the equilibrium pair distribution function g ( r )  and the 
initial velocity given by the Maxwellian distribution. The difference 
between the experimental or MD results and the binary collision theory 
can then be directly and solely attributed to third and higher order 
particle dynamics. An important feature of this formalism is that there 
are no arbitrary parameters. The only inputs required are g(r )  and the 
interatomic potential u(r). As is to be expected, the results of this theory 
will show increased derivation from M D  results for longer times, and 
for higher densities where the effects of higher order collisions become 
significant. 

The tagged-particle intermediate scattering function is defined as 

where pq = eiq'R is the tagged particle density and L = Lo + xjk Lj,  is 
the complete Liouville operator. Here Lo is the kinetic contribution and 
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L, is the two-body potential contribution to L. (...) denotes an 
equilibrium ensemble average. The basic formula of BCE is9 

]+  ... ( 2 )  
1 1 1 

where z is the Laplace transform variable oft. The first term involves no 
collisions while the second term involves just one collision between the 
pair of particles j and k which in our case refer to the Hydrogen and the 
stationary Argon atoms. Inserting (2) into ( l ) ,  we can write 

F,(q, t )  = m q ,  t )  + nFf(q, t )  

F:(q, t )  = exp[ -qZu;t2/4] 

(3) 
where 

is the ideal gas contribution and, after some algebra, 

Here n is the density of the Argon scatterers and ug = 2k,T/m with rn 
being the mass of the Hydrogen atom. R(t), the position of the 
Hydrogen atom at time t is determined through two-particle dynamics. 
g(R) is the Hydrogen-Argon pair distribution function and 4 ( V )  is the 
Maxwellian distribution of velocities of Hydrogen atoms. 

The potential that determines the two-particle dynamics is taken to 
be the Lennard-Jones potential and g ( R )  is calculated through the 
mean spherical model equation13 

where the subscripts A and H stand for Argon and Hydrogen respec- 
tively. u is the Lennard-Jones potential length parameter. g A A  and gHH 
are computed for L-J potential using the optimized cluster theoryI4 at a 
temperature of 298 K and at an Argon density of 10.45 x lo2' particles 
per C.C. (n* = na3 = 0.41) and a Hydrogen density of 0.54 x loz1 
(a* - 0.01), as used in the experiment.6 The Hydrogen behaves essen- 
tially as an ideal gas at this density. The density of the scatterers is quite 
high (about half the triple point density) and thus the system qualifies 
as a dense gas and hence dilute gas theories like the Boltzmann 
equation will not be applicable. 

The multi-dimensional integral occurring in (4) is performed through 
an importance sampling Monte Carlo integration methods." R(t) is 
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evaluated through the Verlet algorithm. l 6  A typical number of initial 
configurations taken to compute the integral is 60,000 and the R- 
integration is cut off around R = 2.25aA. It is estimated that the errors 
involved in the numerical integration is no more than a few percent. 
The incoherent scattering function S,(q, o) is then obtained from 

S,(q, 0) = ~~ F,(q, t )  cos(ot)dt (6) a JOrn 
To get an overall view of the effect of the binary collision, we have 

pIotted in Figure 1, the half-width of S,(q, w )  as a function of the wave 
number q- The triangles are the results of our calculations and the 
circles are the M D  results. It is seen that our results are in very good 
agreement with M D  values at larger values of q and, as is to be 
expected, our model does show increased deviation from M D  as the 
wave number is reduced, when the contributions from higher order 
collisions become quite significant. But even at q = 2.82 A-', the ideal 
gas behaviour is far from being approached. Our results are higher than 
the MD value by less than 4% but the ideal gas half width is higher by 
more than 18 % at this value of q. Again, even at the lowest value of q 
(=0.87 k') considered, a reasonable portion of the spectrum can be 
explained by a single binary collision between the Hydrogen atom and 
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Figure 1 
MD results while the triangles represent our results. 

Half-width (meV) of SJ4, w )  vs. 4 (k ') of Lorentz Gas. The circles represent 
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the stationary Argon atom. More importantly, the difference between 
our results and those of MD can be attributed solely to three and 
higher-order particle dynamics. 

A look at  the time domain will provide a more critical test of the 
validity of the BCE method. In Figure 2, we have plotted F,(q, t), the 
intermediate scattering function, as a function of time for a relatively 
low value of 4 = 1.30 kl, for which we expect multiple collisions 
contribution to be significant. The solid line represents our results while 
the dashed curve is for MD and the curve with dots on them is for the 
ideal gas. The difference between our results and that of ideal gas is 
solely due to the effect of a single binary collision and that between our 
and MD results is solely due to the multiple collisions. It is seen that the 
BCE theory is able to account for the decay of the correlation function 
to about 0.15 p sec, by which time it has decayed to nearly one-quarter 
of its initial value. Thus it is the last 25 % of the decay, for this value of q, 
which is influenced by higher order dynamics. In order to fully describe 
the decay at  longer times, we need a theory which takes into account 
such events. By contrast, the system behaves like an ideal gas only up to 
the time the correlation function has decayed to 75 % of its initial value. 

t(psec1 

Figure 2 Intermediate scattering function F,(q, c )  vs. t (p sec) for q = 1.30 k'. The 
solid line represents our results. The dashed line represents MD results and the curve with 
dots represents the ideal gas results. 
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As we go to higher values of q, the agreement becomes better and for 
example at q = 2.82 A -  ', most of the decay of F,(q, t )  can be accounted 
for by a binary collision. 

We have presented a dynamical theory with realistic potential in 
which we have investigated the role a binary collision plays in the 
evolution of the density correlation function of a Lorentz Gas. One 
would expect our approximation to be valid only for short times and at 
low densities. However, the analysis shows that it is able to account for 
a significant portion of the observed spectrum. Our analysis has also 
provided a quantitative estimate of the effect. 
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